
OpenMP: An API for
Portable Shared
Memory Programming
Alfred Park

February 26, 2003

OpenMP: What is it?

! A standard developed under the review of many
major software and hardware developers,
government, and academia

! Facilitates simple development of programs to
take advantage of SMP architectures
" SMP: Symmetric multi-processing, access time to

memory is approx. equal for all processors (usually 2-
16 processors)

" Shared Memory: memory local to all processors in an
SMP domain

" Distributed Memory: remote memory access (non-
local memory) – NUMA (clusters, grids)

OpenMP: What is it?

! OpenMP API is comprised of:
" Compiler directives
" Library routines
" Environment variables

! OpenMP language support:
" Fortran, C, C++

! Compilers supporting OpenMP:
" Intel Compilers, Portland Group (PGI), IBM, Compaq
" Omni, OdinMP can be used with gcc

Fork-Join Parallelism

! Master-Worker Team thread pattern

Master

Parallel Loop

“Fork” “Join”

Parallel Computation

Behind the Scene

! Thread communication through shared variables
(shared memory)

! Threads can be “carried through” from one
parallel “region” to the next
" Important! Need to amortize thread fork cost and

minimize thread joins
! Number of threads can be dynamically altered

during runtime
! Support for nested parallelism exists in some

compilers

Syntax

! Compiler directives:
"C/C++

! #pragma omp directive [clause, …]
"Fortran

! !$OMP directive [clause, …]
! C$OMP directive [clause, …]
! *$OMP directive [clause, …]

! We will focus on C syntax

Parallel Regions

! Fundamental OpenMP construct:
"#pragma omp parallel

#pragma omp parallel
{
printf(“hello world from thread %d of

%d\n”, omp_get_thread_num(),
omp_get_num_threads());

}

Sample Output

! From an 8-processor machine:
hello world from thread 0 of 8
hello world from thread 2 of 8
hello world from thread 3 of 8
hello world from thread 7 of 8
hello world from thread 6 of 8
hello world from thread 1 of 8
hello world from thread 4 of 8
hello world from thread 5 of 8

Another Example

double xyz[5000][3];

printf(“entering parallel region\n”);
#pragma omp parallel
{

int tid;
tid = omp_get_thread_num();
compute_edges(tid, xyz);

}
printf(“parallel computation completed\n”);

Master only
Thread Forks
Thread Private

Space

Implicit barrier,
Thread join

Master only

Note: xyz is shared between all threads!

Work-sharing Constructs

! #pragma omp for
"Each thread receives a portion of work to

accomplish – data parallelism
! #pragma omp section

"Each section executed by a different thread –
functional parallelism

! #pragma omp single
"Serialize a section of code, only one thread

executes code block (good for I/O)

Data Parallelism Example

int a[10000], b[10000], c[10000];

#pragma omp parallel
#pragma omp for
for (i = 0; i < 10000; i++) {

a[i] = b[i] + c[i];
}

No specified schedule, each thread gets a chunk of the
for loop to process

Implicit barrier at the end of the for loop, can be disabled
with the nowait clause

Work-sharing Scheduling

! schedule(static [,chunk])
" Threads get a chunk of data to iterate over

! schedule(dynamic [,chunk])
" Threads grab chunk iterations off work queue until all

work is exhausted
! schedule(guided [,chunk])

" Threads grab large chunk sizes and decreases to
specified chunk size as the computation progresses

! schedule(runtime)
" Use the schedule defined at runtime by the

OMP_SCHEDULE environment variable

Functional Parallelism
#pragma omp parallel
#pragma omp sections nowait
{

thread1_work();
#pragma omp section

thread2_work();
#pragma omp section

thread3_work();
#pragma omp section

for (i = 0; i < 10000; i++) {
quick_transform(xyz);

}
}

Probably a good idea to equally distribute work between
sections!

Combining Work-sharing Constructs

int a[10000], b[10000], c[10000];

#pragma omp parallel for
for (i = 0; i < 10000; i++) {

a[i] = b[i] + c[i];
}

Good for single parallel loops or nested loops

Can combine parallel with sections as well

If we had multiple for loops and did the above directive
for each one, we would have a non-optimal solution. Why?

Data Scope and Protection

! Shared memory programming
"OpenMP usually defaults to shared data

! Variables declared outside of parallel
regions are implicitly carried into threads
as shared by default

! Variables declared within parallel regions
are private by default

! Functions called within a parallel region or
section have their own private stack space

Data Scope Storage Attributes

! private(var, …)
" Uninitialized, thread local instance of the variable

! shared
" Explicitly share variables across all threads

! firstprivate
" Initialize local instance of the variable from master

thread
! lastprivate

" Upon the end of the last iteration, value of the variable
is copied back out to the master thread

Data Scope Storage Attributes

! threadprivate
" Global data (local file scope in C/C++ or common

blocks in Fortran) is private to each thread and
persistent throughout lifetime of program

! default
" For the corresponding parallel directive, variables will

be default to either the specified private or shared
scope

! copyin
" Initialize value of threadprivate variables to the value

reported by the master thread

Example

int x;

x = 0;
#pragma omp parallel for firstprivate(x)
for (i = 0; i < 10000; i++) {
x = x + i;

}
printf(“x is %d\n”, x);

Initialize x to zero

Copy value of x
from master

Print out value of x

Oops! The value x is undefined!

Need lastprivate(x) to copy value back out to master

Global Reduction

! It is often necessary to accumulate (or
perform some other operation) on a single
variable for all threads and return a single
value at the end of the computation

! OpenMP provides a reduction directive
"reduction(op: list)

! op must not be overloaded
! op can be +, *, -, /, &, ^, |, &&, ||

" Binary bitwise operations allowed as well

Synchronization

! As with any parallel programming
interface, there is always potential for:
"Deadlocks
"Race conditions

! OpenMP provides synchronization
directives

Synchronization Constructs

! critical
" Creates critical section, only one thread can enter at a

time
! atomic

" Special version of critical, for atomic ops (e.g.
updating a single memory location)

! barrier
" Synchronization point for all threads in parallel region

! ordered
" Forces sequential execution of the following block

Synchronization Constructs
! flush

" Synchronization point forcing program to provide a
consistent view of memory

! single
" Mentioned in work-sharing construct, not a real

synchronization construct
! master

" Not really a synchronization construct – only the
master thread executes code block, all other threads
skip it (no implied barriers or flushes)

Environment Variables

! OMP_NUM_THREADS
" Sets max number of threads to use

! OMP_SCHEDULE
" Scheduling algorithm for “parallel for” regions

! OMP_DYNAMIC
" Dynamic adjustment of threads for parallel regions

(TRUE, FALSE)
! OMP_NESTED

" Enables or disables nested parallelism (TRUE,
FALSE)

OpenMP Library Routines

! Always prefixed with omp_
! Too many to list here, see references slide

for sites with an OpenMP API listing

An OpenMP Example

! Simple Monte-Carlo approximation for the
volume of a sphere
"x2 + y2 + z2 = 4; x, y, z >= 0

! Embarrassingly Parallel (EP) class, should
achieve good speedup: close to linear with
many iterations

Extending OpenMP

! OpenMP can be used in conjunction with
distributed memory message passing

! Message Passing Interface (MPI) can be used to
manage computations between shared memory
machines
" For example, data sets in different files

! Each SMP reads their own data file
! Performs computation on data set, returns an array of

reductions
! MPI could reduce each component of the array from all SMP

machines and return a single globally reduced array

References

! OpenMP: http://www.openmp.org/
! Introduction to OpenMP:

http://www.llnl.gov/computing/tutorials/wor
kshops/workshop/openMP/MAIN.html

! SC’99 OpenMP Tutorial:
http://www.openmp.org/presentations/inde
x.cgi?sc99_tutorial

